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Abstract: These instructions provide you guidelines for preparing 

papers for International Journal. Use this document as a template and 

as an instruction set. This paper is concerned with the impulsive 

stabilization problems for two kinds of 3th-order delay differential 

equations. By the method of Lyapunov function, we prove that the 

non-impulsive equations can be stabilized by the proper impulse 

control. Our results has improved and extended some results. We 

also give examples to illustrate the efficiency of our results. 
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1. Introduction 

 

When you submit your paper print it in two-column format, 

including figures and tables. In addition, designate one author 

as the “corresponding author”. This is the author to whom 

proofs of the paper will be sent. Proofs are sent to the 

corresponding author only. Third-order differential equation; 

Impulsive stabilization; Delay; Lyapunov function Recently, 

the problem of impulsive stabilization for differential 

equations has attracted many authors’ attentions and some 

results have been published (see [1-10]). Impulses can make 

unstable systems stable. The problem of stabilizing the 

solutions by imposing proper impulse control has been used in 

many fields such as physics, pharmacokinetics, 

biotechnology, economics, chemical technology. However 

some authors have researched the impulsive stabilization 

problems for two kinds of 2th-order delay differential 

equations in [1-5], they proved that it also can be made 

exponentially continuous with respect to initial data by 

impulses on some interval kt . And the presented references 

here ([7,8,10]) dealt with mostly the first-order delay 

differential equations (see[7]), In this paper , we consider 

third-order delay differential equations and deal with more 

general equations, the results we prove here generalize recent 

ones by Li and Weng [1]. This paper is about third-order 

delay differential equations and deal with more general 

equations. We also establish sufficient conditions for the 

stability of solutions by imposing proper impulse control.  

This paper is organized as follows. In Section 2, we establish 

third-order delay deferential equations. In Section 3, by using 

Lyapunov function and analysis methods, we prove that the 

non-impulsive equations can be stabilized by the proper 

impulse control. In Section 4, two examples are discussed to 

illustrate the efficiency of the main results. 

 
 

2. Preliminaries 

 

We consider the following two equations with impulses: 
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With the following assumptions: 

)( 1H     Rttx  ,:)(,0 0  ; 

)( 2H  )(),( txtx  d e n o t e s  t h e  r i g h t  

d e r i v a t i v e  o f  )(),( txtx , and

  )()( txtx ，
h

txhtx
tx

h

)()(
lim)(

0





. If 

)(tx  is piecewise continuous, then )( sx and )( sx

denote,         respectively, its left and right limits as t
tend to s ; 

)( 3H    Rtt  00 ,:   has at most finite discontinuity 

points of the first kind and is right continuous at these 

points; 

)( 4H )(),(),( tctbta are continuous on  ,0t , )(te is 

continuous on  ,0 ; 

)( 5H  


 k
k

kk ttttt lim,0 121  , 

with ltt kk  1 , Nt ; 

)( 6H consider the impulses at times kt , 2,1k    

)),(()()),(()()),(()(   kkkkkkkkk txUtxtxJtxtxItx

 Where RRUJI Kkk :,, are 

continuous and NkUJI kkk  ,0)0()0()0( ;  

The following definitions are slightly modified from [1]: 

Definition 2.1  A function   0,,: 00   Rttx  

is a solution of equation (1)(or(2)), though ),,,( 000 zyt  , if 
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(i) )(),(),( txtxtx  are continuous on

   Zkttt k  ,\, 00  ; 

(ii)

  ,)(,)(,,),()( 000000 ztxytxtttttx  

)(tx satisfies the first equality of (1)(or(2) on 

   Zkttt k  ,\, 00  ; 

(iii) )(),(),( txtxtx  all have two-side limits and right 

continuous at point kt , and )(),(),( kkk txtxtx 

satisfy 

the third equality of (1)(or(2)); 

Definition 2.2  The problem of equation (1)(or(2)) is said to 

be exponentially stabilized by impulses, if there exist 0 , 

a sequence 
Nkkt 

satifying  5H , and sequences of 

continuous functions     kkk UJI ,, . such that for all

0 , there exists 0 , such that if a solution

),,,;( 000 zyttx  of (1)(or(2)) fulfills: 
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3 Main Results 

 

First we consider system (1) 

Theorem 3.1.  If there exist 0,0,0  CBA , such that 

,)(,)(,)( CtcBtbAta  and  

  )1(2exp CBAA  ,                          (3)                                          

The solution of system(1)can be exponentially stabilized by 

impulses. 

Proof.  By (3) there exist 0 and l such that 

   .)1(2exp)(2exp lCBAlA     (4)                                      
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We will prove that for each solution ),,,;( 000 zyttx  of (1), 

such that 
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Solving   )()1(2)( tVCBAtV  ，we obtain 
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 01  if  10,ttt , Integrating the above inequality from 0t to
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The proof is complete. 

Now we prove that the problem (2) can be exponentially 

stabilized by impulses. 

Theorem3.2  If there exist 0E , such that Ete )( , and 

  )1(2exp
2

1 2 EBAE  ,                    (5)                                       

The solution of system (2) can be exponentially stabilized by 

impulses. 

Proof.  By (5), there exist 0 and l , such that 
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The proof is complete. 

4 Examples 

Example 4.1. Consider the following equation: 
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                                                                                             (7)                         

whose characteristic equation is 

   05.0025.033.0 01.023    e  

By Mathematica sofeware, we find a characteristic root of 

(7) with the positive real part. Hence the non-impulsive 

system (7) is unstable. 

Consider

5.0,2/1,01.0,1  CBlA  , and 

we can verify that 

   lCBAlA )1(2exp)(2exp  

 .)1(2exp CBA   

Considering the impulses at kt , such that 01.01  kk tt and 
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where 
2
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d , By Theorem 3.1 the 

unstable system (7) can be exponentially stabilized by 

impulses. 

Example 4.2. Consider the following equation: 
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                                                                                             (8)                                                               

whose characteristic equation is 

075.0 0375.023    e  

By Mathematica sofeware, we find a characteristic root of 

(8) with the positive real part. Hence the non-impulsive 

system (8) is unstable. 

Consider

75.0,2/1,0375.0,1  ClA  , and 

we can verify that 

   lCBAlA )1(2exp)(2exp  

 .)1(2exp CBA   

Considering the impulses at kt , such that 0375.01  kk tt

and 
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where
2
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the unstable system (8) can be exponentially stabilized by 

impulses. 

References 

[1] A.Weng,J.Sun, Impulsive stabilization of second-order 

nonlinear delay differential systems,Appl.Math.Comput.214 

(2009)95-101 

[2] L.P. Gimenes, M. Federson, Existence and impulsive 

stability for second order retarded differential equations, 

Appl. Math.Comput.177 (2006)44–62. 

[3] Xiang Li, Peixuan Weng, Impulsive stabilization of two 

kinds of second-order linear delay differential equations, J. 

Math. Anal. Appl. 291 (2004) 270–281. 

[4] A.Weng,J.Sun, Impulsive stabilization of second-order  

delay differential equations, Nonlinear Anal,:Real Word  

Appl.8(2007) 1401-1420 

[5] L.P. Gimenes, M. Federson, Impulsive stability for  

systems of second order retarded differential equations,  

Nonlinear Anal. 67 (2007) 545–553. 

[6] Xinzhi Liu, George Ballinger, Existence and  

continuability of solutions for differential equations with  

delays and state-dependent impulses, Nonlinear Anal. 51 

(2002) 633–647. 

[7] L. Berezansky, E. Braverman, Impulsive stabilization of 

linear delay differential equations, Dynam. Systems,Appl. 5 

(1996) 263–276. 

[8] W. Feng, Y. Chen, The weak exponential asymptotic 

stability of impulsive differential system, Appl. Math. J.  

Chinese Univ. 1 (2002) 1–6. 

[9] J. Shen, Z. Luo, X. Liu, Impulsive stabilization of 

functional differential equations via Liapunov functionals, J.  

Math. Anal.Appl.240 (1999)1-5 

[10] X. Li, Impulsive stabilization of linear differential system, 

J. South China Normal Univ. Natur. Sci. Ed. 1(2002) 52–56. 

   

 


